SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Compare and contrast the build times for the project under different approaches, including non-virtualized architecture, virtualization with no cache, and virtualization with several improvements. How did the build times change with each iteration?',
"After so many improvements we've noticed that the build started to be even faster when compared to the non-virtualized architecture times\n\nApproximate build times for the same project:\n\n- 1st approach with no virtualization ~ 10 minutes\n- 1st iteration of virtualization with no cache and other improvements ~ 30 minutes\n- virtualization with several improvements ~ 4-5 minutes\n\nAs you can see, we've achieved a very scalable CI system that seems to be ideal...\n\n## Current issues",
'Pro-tips first:\n\n- note, that in order to use FireStick in your app, you need to download AmazonFling and WhisperPlay jars from here and include them in your project.\n- while launching the app after integrating FireStick you can get a similar crash:java.lang.NoClassDefFoundError: Failed resolution of: Lorg/apache/http/conn/util/InetAddressUtils;\n at com.amazon.whisperlink.android.util.RouteUtil.createRoute(RouteUtil.java:78)\n at com.amazon.whisperlink.android.util.RouteUtil.createRoute(RouteUtil.java:51)\n ...\nCaused by: java.lang.ClassNotFoundException: Didn\'t find class "org.apache.http.conn.util.InetAddressUtils"\n\nIt is caused by lack of apache networking library in android runtime, since Android 6. To fix it, add the following code to your AndroidManifest.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8421 |
cosine_accuracy@3 | 0.9498 |
cosine_accuracy@5 | 0.9761 |
cosine_accuracy@10 | 0.9928 |
cosine_precision@1 | 0.8421 |
cosine_precision@3 | 0.3166 |
cosine_precision@5 | 0.1952 |
cosine_precision@10 | 0.0993 |
cosine_recall@1 | 0.8421 |
cosine_recall@3 | 0.9498 |
cosine_recall@5 | 0.9761 |
cosine_recall@10 | 0.9928 |
cosine_ndcg@10 | 0.9219 |
cosine_mrr@10 | 0.8987 |
cosine_map@100 | 0.899 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,664 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 13 tokens
- mean: 30.91 tokens
- max: 88 tokens
- min: 8 tokens
- mean: 175.1 tokens
- max: 256 tokens
- Samples:
sentence_0 sentence_1 How does the 'code-coverage' job in the workflow ensure that it has access to the necessary test results before running the code coverage analysis?
```
code-coverage:
name: Merged code coverage
runs-on: ubuntu-20.04
permissions:
pull-requests: write
needs:
- unit-tests
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Download tests results for both jobs
uses: actions/download-artifact@v4
with:
name: test-results-unit
name: test-results
- name: Run code coverage
run: ./gradlew codeCoverage
- name: Store HTML coverage report
uses: actions/upload-artifact@v4
with:
name: coverage-report
path:Describe the purpose and functionality of the 'Download tests results for both jobs' and 'Store HTML coverage report' steps in the workflow.
```
code-coverage:
name: Merged code coverage
runs-on: ubuntu-20.04
permissions:
pull-requests: write
needs:
- unit-tests
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Download tests results for both jobs
uses: actions/download-artifact@v4
with:
name: test-results-unit
name: test-results
- name: Run code coverage
run: ./gradlew codeCoverage
- name: Store HTML coverage report
uses: actions/upload-artifact@v4
with:
name: coverage-report
path:Explain the purpose of the
Payment.Worker
module in the given code snippet. How does it utilize the GenServer behavior and what is the significance of the@interval
attribute?```
defmodule Payment.Worker do
use GenServer
@interval 10 * 6000
def start_link() do
...
end
def init() do
Process.send_after(self(), :work, @interval)
{:ok, %{}}
end
def handle_info(:work, state) do
Repo.transaction(fn ->
Documents.Accepted.fetch() - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
0.2994 | 50 | 0.9175 |
0.5988 | 100 | 0.9152 |
0.8982 | 150 | 0.9211 |
1.0 | 167 | 0.9219 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 34
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for wylupek/au-blog-rag-embedder
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.842
- Cosine Accuracy@3 on Unknownself-reported0.950
- Cosine Accuracy@5 on Unknownself-reported0.976
- Cosine Accuracy@10 on Unknownself-reported0.993
- Cosine Precision@1 on Unknownself-reported0.842
- Cosine Precision@3 on Unknownself-reported0.317
- Cosine Precision@5 on Unknownself-reported0.195
- Cosine Precision@10 on Unknownself-reported0.099
- Cosine Recall@1 on Unknownself-reported0.842
- Cosine Recall@3 on Unknownself-reported0.950