Quality Estimation for Machine Translation

This model is a fine-tuned version of answerdotai/ModernBERT-base on the ymoslem/wmt-da-human-evaluation dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss
0.0671 0.1004 1000 0.0665
0.067 0.2007 2000 0.0652
0.064 0.3011 3000 0.0644
0.0641 0.4015 4000 0.0638
0.0629 0.5019 5000 0.0635
0.0637 0.6022 6000 0.0634
0.0653 0.7026 7000 0.0633
0.0644 0.8030 8000 0.0633
0.0638 0.9033 9000 0.0633
0.064 1.0037 10000 0.0632

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.4.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
150M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ymoslem/ModernBERT-base-qe-lr5e-05-v1

Finetuned
(174)
this model

Dataset used to train ymoslem/ModernBERT-base-qe-lr5e-05-v1

Collection including ymoslem/ModernBERT-base-qe-lr5e-05-v1