all-MiniLM-L6-v5-pair_score-syn-fr

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'jeremy hush book',
    'chinese jumper',
    'perfume',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4598
spearman_cosine 0.4406
pearson_manhattan 0.4134
spearman_manhattan 0.4372
pearson_euclidean 0.4145
spearman_euclidean 0.4406
pearson_dot 0.4598
spearman_dot 0.4406
pearson_max 0.4598
spearman_max 0.4406

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss sts-dev_spearman_cosine
0 0 - - 0.4406
0.0094 100 17.0727 - -
0.0188 200 16.8813 - -
0.0282 300 16.5085 - -
0.0376 400 15.5716 - -
0.0469 500 14.5542 - -
0.0563 600 13.1478 - -
0.0657 700 11.3662 - -
0.0751 800 9.5649 - -
0.0845 900 8.536 - -
0.0939 1000 8.2589 - -
0.1033 1100 8.1649 - -
0.1127 1200 8.134 - -
0.1221 1300 8.1331 - -
0.1314 1400 8.0893 - -
0.1408 1500 8.0706 - -
0.1502 1600 8.0786 - -
0.1596 1700 8.058 - -
0.1690 1800 8.0768 - -
0.1784 1900 8.0834 - -
0.1878 2000 8.0714 - -
0.1972 2100 8.0671 - -
0.2066 2200 8.051 - -
0.2159 2300 8.0287 - -
0.2253 2400 8.0445 - -
0.2347 2500 8.0444 - -
0.2441 2600 8.0679 - -
0.2535 2700 8.0472 - -
0.2629 2800 8.0151 - -
0.2723 2900 8.0599 - -
0.2817 3000 8.0304 - -
0.2911 3100 8.0373 - -
0.3004 3200 8.0382 - -
0.3098 3300 8.0112 - -
0.3192 3400 8.0209 - -
0.3286 3500 8.0487 - -
0.3380 3600 8.0138 - -
0.3474 3700 8.046 - -
0.3568 3800 7.9876 - -
0.3662 3900 7.997 - -
0.3756 4000 8.0462 - -
0.3849 4100 7.9882 - -
0.3943 4200 7.9949 - -
0.4037 4300 7.9951 - -
0.4131 4400 8.0202 - -
0.4225 4500 8.0126 - -
0.4319 4600 8.0351 - -
0.4413 4700 8.0419 - -
0.4507 4800 7.9959 - -
0.4601 4900 8.0076 - -
0.4694 5000 8.0022 8.0125 -
0.4788 5100 7.9819 - -
0.4882 5200 7.9836 - -
0.4976 5300 7.9996 - -
0.5070 5400 8.0221 - -
0.5164 5500 8.0854 - -
0.5258 5600 8.0306 - -
0.5352 5700 7.9924 - -
0.5445 5800 7.9884 - -
0.5539 5900 8.0253 - -
0.5633 6000 7.9773 - -
0.5727 6100 7.9878 - -
0.5821 6200 8.0495 - -
0.5915 6300 7.9908 - -
0.6009 6400 7.9886 - -
0.6103 6500 8.0232 - -
0.6197 6600 7.9933 - -
0.6290 6700 8.0143 - -
0.6384 6800 7.9956 - -
0.6478 6900 7.9755 - -
0.6572 7000 7.9814 - -
0.6666 7100 7.9849 - -
0.6760 7200 8.0076 - -
0.6854 7300 8.0071 - -
0.6948 7400 8.003 - -
0.7042 7500 7.9966 - -
0.7135 7600 8.0052 - -
0.7229 7700 8.0226 - -
0.7323 7800 7.9809 - -
0.7417 7900 7.9802 - -
0.7511 8000 8.0008 - -
0.7605 8100 7.9876 - -
0.7699 8200 8.0295 - -
0.7793 8300 7.9992 - -
0.7887 8400 7.9942 - -
0.7980 8500 7.9872 - -
0.8074 8600 7.9757 - -
0.8168 8700 7.9835 - -
0.8262 8800 8.0555 - -
0.8356 8900 8.0055 - -
0.8450 9000 7.9817 - -
0.8544 9100 7.9952 - -
0.8638 9200 8.0083 - -
0.8732 9300 7.984 - -
0.8825 9400 7.9918 - -
0.8919 9500 7.9816 - -
0.9013 9600 8.0167 - -
0.9107 9700 7.9747 - -
0.9201 9800 7.9882 - -
0.9295 9900 8.0003 - -
0.9389 10000 8.0067 7.9823 -
0.9483 10100 8.017 - -
0.9577 10200 7.9763 - -
0.9670 10300 7.9553 - -
0.9764 10400 7.9525 - -
0.9858 10500 7.9987 - -
0.9952 10600 7.9715 - -
1.0046 10700 7.947 - -
1.0140 10800 8.0298 - -
1.0234 10900 7.9756 - -
1.0328 11000 7.979 - -
1.0422 11100 8.0417 - -
1.0515 11200 7.9936 - -
1.0609 11300 7.971 - -
1.0703 11400 7.99 - -
1.0797 11500 7.9562 - -
1.0891 11600 7.9541 - -
1.0985 11700 7.9788 - -
1.1079 11800 7.9883 - -
1.1173 11900 7.9643 - -
1.1267 12000 7.9806 - -
1.1360 12100 7.9543 - -
1.1454 12200 7.9684 - -
1.1548 12300 7.9492 - -
1.1642 12400 7.984 - -
1.1736 12500 7.9817 - -
1.1830 12600 7.9621 - -
1.1924 12700 7.9782 - -
1.2018 12800 7.9748 - -
1.2112 12900 7.9606 - -
1.2205 13000 7.9654 - -
1.2299 13100 7.9708 - -
1.2393 13200 7.9832 - -
1.2487 13300 7.9482 - -
1.2581 13400 7.9717 - -
1.2675 13500 7.9667 - -
1.2769 13600 7.9653 - -
1.2863 13700 7.969 - -
1.2957 13800 7.9416 - -
1.3050 13900 7.994 - -
1.3144 14000 7.9821 - -
1.3238 14100 7.9656 - -
1.3332 14200 7.9763 - -
1.3426 14300 7.9708 - -
1.3520 14400 7.9713 - -
1.3614 14500 8.0128 - -
1.3708 14600 7.9914 - -
1.3802 14700 7.9839 - -
1.3895 14800 7.9485 - -
1.3989 14900 7.9564 - -
1.4083 15000 7.9646 7.9795 -
1.4177 15100 7.9443 - -
1.4271 15200 8.002 - -
1.4365 15300 7.9493 - -
1.4459 15400 7.9561 - -
1.4553 15500 7.9571 - -
1.4647 15600 7.9634 - -
1.4740 15700 7.9348 - -
1.4834 15800 7.9476 - -
1.4928 15900 7.9373 - -
1.5022 16000 7.9985 - -
1.5116 16100 7.9518 - -
1.5210 16200 7.9751 - -
1.5304 16300 7.9677 - -
1.5398 16400 7.9538 - -
1.5492 16500 7.9894 - -
1.5585 16600 7.9832 - -
1.5679 16700 7.9582 - -
1.5773 16800 7.975 - -
1.5867 16900 7.9379 - -
1.5961 17000 7.9434 - -
1.6055 17100 7.9805 - -
1.6149 17200 7.946 - -
1.6243 17300 7.9613 - -
1.6336 17400 7.9687 - -
1.6430 17500 7.9612 - -
1.6524 17600 7.9614 - -
1.6618 17700 7.95 - -
1.6712 17800 7.9874 - -
1.6806 17900 7.9665 - -
1.6900 18000 7.9562 - -
1.6994 18100 7.9777 - -
1.7088 18200 7.9771 - -
1.7181 18300 7.9405 - -
1.7275 18400 7.9516 - -
1.7369 18500 8.0012 - -
1.7463 18600 7.9464 - -
1.7557 18700 7.9623 - -
1.7651 18800 7.9478 - -
1.7745 18900 7.9528 - -
1.7839 19000 7.9617 - -
1.7933 19100 7.966 - -
1.8026 19200 7.9718 - -
1.8120 19300 7.9679 - -
1.8214 19400 7.9448 - -
1.8308 19500 7.9299 - -
1.8402 19600 7.967 - -
1.8496 19700 7.9327 - -
1.8590 19800 7.9602 - -
1.8684 19900 7.9515 - -
1.8778 20000 7.9447 7.9457 -
1.8871 20100 7.9487 - -
1.8965 20200 7.9438 - -
1.9059 20300 7.9821 - -
1.9153 20400 7.9485 - -
1.9247 20500 7.9251 - -
1.9341 20600 7.982 - -
1.9435 20700 7.9508 - -
1.9529 20800 7.9511 - -
1.9623 20900 7.9747 - -
1.9716 21000 7.9365 - -
1.9810 21100 7.9845 - -
1.9904 21200 8.0186 - -
1.9998 21300 8.0228 - -
2.0092 21400 7.949 - -
2.0186 21500 7.9371 - -
2.0280 21600 7.9355 - -
2.0374 21700 7.9528 - -
2.0468 21800 7.9246 - -
2.0561 21900 7.9721 - -
2.0655 22000 7.9438 - -
2.0749 22100 7.9349 - -
2.0843 22200 7.9315 - -
2.0937 22300 7.9398 - -
2.1031 22400 7.9232 - -
2.1125 22500 7.9189 - -
2.1219 22600 7.9296 - -
2.1313 22700 7.9658 - -
2.1406 22800 7.922 - -
2.1500 22900 7.9247 - -
2.1594 23000 7.9748 - -
2.1688 23100 7.9632 - -
2.1782 23200 7.9416 - -
2.1876 23300 8.0063 - -
2.1970 23400 7.9347 - -
2.2064 23500 7.9242 - -
2.2158 23600 7.9537 - -
2.2251 23700 7.9281 - -
2.2345 23800 7.9417 - -
2.2439 23900 7.9699 - -
2.2533 24000 7.9919 - -
2.2627 24100 7.9322 - -
2.2721 24200 7.9702 - -
2.2815 24300 7.9421 - -
2.2909 24400 7.9453 - -
2.3003 24500 7.9485 - -
2.3096 24600 7.9491 - -
2.3190 24700 7.9575 - -
2.3284 24800 7.9481 - -
2.3378 24900 7.9261 - -
2.3472 25000 7.9347 7.9455 -
2.3566 25100 7.9434 - -
2.3660 25200 7.9627 - -
2.3754 25300 7.9303 - -
2.3848 25400 7.9455 - -
2.3941 25500 7.9228 - -
2.4035 25600 7.9492 - -
2.4129 25700 7.9384 - -
2.4223 25800 7.9408 - -
2.4317 25900 7.9497 - -
2.4411 26000 7.9159 - -
2.4505 26100 7.941 - -
2.4599 26200 7.937 - -
2.4693 26300 7.9484 - -
2.4786 26400 7.9238 - -
2.4880 26500 7.9329 - -
2.4974 26600 7.9506 - -
2.5068 26700 7.9568 - -
2.5162 26800 7.9548 - -
2.5256 26900 7.9097 - -
2.5350 27000 7.9085 - -
2.5444 27100 7.9368 - -
2.5538 27200 7.9546 - -
2.5631 27300 7.9255 - -
2.5725 27400 7.9536 - -
2.5819 27500 7.919 - -
2.5913 27600 7.917 - -
2.6007 27700 7.937 - -
2.6101 27800 7.9159 - -
2.6195 27900 7.9306 - -
2.6289 28000 7.9592 - -
2.6382 28100 7.9375 - -
2.6476 28200 7.9225 - -
2.6570 28300 7.958 - -
2.6664 28400 7.9059 - -
2.6758 28500 7.936 - -
2.6852 28600 7.9138 - -
2.6946 28700 7.9565 - -
2.7040 28800 7.926 - -
2.7134 28900 7.9365 - -
2.7227 29000 7.9122 - -
2.7321 29100 7.9196 - -
2.7415 29200 7.9533 - -
2.7509 29300 7.925 - -
2.7603 29400 7.9594 - -
2.7697 29500 7.9115 - -
2.7791 29600 7.956 - -
2.7885 29700 7.9394 - -
2.7979 29800 7.9165 - -
2.8072 29900 7.9471 - -
2.8166 30000 7.9724 7.9237 -
2.8260 30100 7.9205 - -
2.8354 30200 7.9513 - -
2.8448 30300 7.9101 - -
2.8542 30400 7.9237 - -
2.8636 30500 7.9428 - -
2.8730 30600 7.9408 - -
2.8824 30700 7.956 - -
2.8917 30800 7.9196 - -
2.9011 30900 7.9262 - -
2.9105 31000 7.9516 - -
2.9199 31100 7.9086 - -
2.9293 31200 7.9339 - -
2.9387 31300 7.9334 - -
2.9481 31400 7.9308 - -
2.9575 31500 7.9569 - -
2.9669 31600 7.9256 - -
2.9762 31700 7.9108 - -
2.9856 31800 7.9409 - -
2.9950 31900 7.9159 - -
3.0044 32000 7.8975 - -
3.0138 32100 7.9583 - -
3.0232 32200 7.9031 - -
3.0326 32300 7.9448 - -
3.0420 32400 7.9438 - -
3.0514 32500 7.9284 - -
3.0607 32600 7.9124 - -
3.0701 32700 7.9153 - -
3.0795 32800 7.9188 - -
3.0889 32900 7.9358 - -
3.0983 33000 7.9436 - -
3.1077 33100 7.9492 - -
3.1171 33200 7.9032 - -
3.1265 33300 7.922 - -
3.1359 33400 7.9677 - -
3.1452 33500 7.9127 - -
3.1546 33600 7.9381 - -
3.1640 33700 7.9198 - -
3.1734 33800 7.9183 - -
3.1828 33900 7.9182 - -
3.1922 34000 7.9261 - -
3.2016 34100 7.9091 - -
3.2110 34200 7.941 - -
3.2204 34300 7.9239 - -
3.2297 34400 7.9208 - -
3.2391 34500 7.9499 - -
3.2485 34600 7.9251 - -
3.2579 34700 7.9219 - -
3.2673 34800 7.9344 - -
3.2767 34900 7.9496 - -
3.2861 35000 7.9184 7.9239 -
3.2955 35100 7.9053 - -
3.3049 35200 7.931 - -
3.3142 35300 7.9347 - -
3.3236 35400 7.9575 - -
3.3330 35500 7.9259 - -
3.3424 35600 7.9262 - -
3.3518 35700 7.9206 - -
3.3612 35800 7.9445 - -
3.3706 35900 7.9043 - -
3.3800 36000 7.9164 - -
3.3894 36100 7.9199 - -
3.3987 36200 7.9132 - -
3.4081 36300 7.9163 - -
3.4175 36400 7.9203 - -
3.4269 36500 7.9491 - -
3.4363 36600 7.9093 - -
3.4457 36700 7.9271 - -
3.4551 36800 7.9202 - -
3.4645 36900 7.9193 - -
3.4739 37000 7.9041 - -
3.4832 37100 7.9284 - -
3.4926 37200 7.9633 - -
3.5020 37300 7.9078 - -
3.5114 37400 7.9144 - -
3.5208 37500 7.9011 - -
3.5302 37600 7.9101 - -
3.5396 37700 7.9331 - -
3.5490 37800 7.9349 - -
3.5584 37900 7.9272 - -
3.5677 38000 7.9033 - -
3.5771 38100 7.895 - -
3.5865 38200 7.9082 - -
3.5959 38300 7.9544 - -
3.6053 38400 7.9063 - -
3.6147 38500 7.9249 - -
3.6241 38600 7.9124 - -
3.6335 38700 7.9174 - -
3.6429 38800 7.9275 - -
3.6522 38900 7.9045 - -
3.6616 39000 7.9327 - -
3.6710 39100 7.9383 - -
3.6804 39200 7.9134 - -
3.6898 39300 7.925 - -
3.6992 39400 7.9214 - -
3.7086 39500 7.9207 - -
3.7180 39600 7.9192 - -
3.7273 39700 7.9194 - -
3.7367 39800 7.9242 - -
3.7461 39900 7.905 - -
3.7555 40000 7.9278 7.9185 -
3.7649 40100 7.9147 - -
3.7743 40200 7.9194 - -
3.7837 40300 7.9004 - -
3.7931 40400 7.9549 - -
3.8025 40500 7.9326 - -
3.8118 40600 7.9124 - -
3.8212 40700 7.9355 - -
3.8306 40800 7.926 - -
3.8400 40900 7.9491 - -
3.8494 41000 7.9163 - -
3.8588 41100 7.9554 - -
3.8682 41200 7.9162 - -
3.8776 41300 7.8916 - -
3.8870 41400 7.8969 - -
3.8963 41500 7.9131 - -
3.9057 41600 7.9272 - -
3.9151 41700 7.9482 - -
3.9245 41800 7.9168 - -
3.9339 41900 7.9062 - -
3.9433 42000 7.9238 - -
3.9527 42100 7.9407 - -
3.9621 42200 7.9482 - -
3.9715 42300 7.9221 - -
3.9808 42400 7.9221 - -
3.9902 42500 7.9313 - -
3.9996 42600 7.9441 - -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
7
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for youssefkhalil320/all-MiniLM-L6-v5-pairscore-syn-fr

Finetuned
(195)
this model

Evaluation results