This model is for debugging. It is randomly initialized using the config from mistralai/mathstral-7B-v0.1 but with smaller size.

Codes:

from huggingface_hub import create_repo, upload_folder
from transformers import (
    pipeline,
    set_seed,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
)
import torch
import transformers
import os

model_id = "mistralai/mathstral-7B-v0.1"
repo_id = "yujiepan/mathstral-v0.1-tiny-random"
save_path = f"/tmp/{repo_id}"

config = AutoConfig.from_pretrained(model_id)
config.hidden_size = 8
config.intermediate_size = 32
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 2
config.head_dim = 2
print(config)

tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.save_pretrained(save_path)

model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16)
model.generation_config = GenerationConfig.from_pretrained(model_id)

set_seed(42)
with torch.no_grad():
    for _, p in sorted(model.named_parameters()):
        torch.nn.init.uniform_(p, -0.1, 0.1)

model.save_pretrained(save_path)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, do_sample=False, device="cuda")
print(pipe("Hello World!"))

messages = [
    {"role": "system", "content": "You are a robot."},
    {"role": "user", "content": "Hi!"},
]
chatbot = pipeline("text-generation", model=save_path, max_length=1000, max_new_tokens=16)
print(chatbot(messages))
Downloads last month
7
Safetensors
Model size
526k params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including yujiepan/mathstral-v0.1-tiny-random