opt-journal-finetune

This model is a fine-tuned version of facebook/opt-125m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
3.9448 0.09 25 3.8409
3.9142 0.17 50 3.7117
3.6859 0.26 75 3.6394
3.7328 0.35 100 3.6144

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for zizoNa/opt-journal-finetune

Base model

facebook/opt-125m
Adapter
(137)
this model